Kedar Karhadkar

🕿 kedar@math.ucla.edu 🜔 kedar2 🔚 karhadkar 🤣 math.ucla.edu/~kedar

Education

Ph.D. Mathematics, University of California, Los Angeles

• Research interests: machine learning theory, graph neural networks.

- GPA: 3.95.
- Passed all qualifying exams (Analysis, Algebra, Basic) upon entry.
- Selected coursework: Machine Learning, Optimization, Numerical Linear Algebra, High-dimensional Statistics.

B.S. Mathematics, *Pennsylvania State University*

- GPA: 3.93.
- Selected coursework: Data Structures and Algorithms, Probability, Mathematical Statistics, Real/Complex/Functional Analysis (Graduate), Abstract Algebra (Graduate), Algebraic Geometry (Graduate).

Skills

- Languages: Python, C++, Java.
- Tools: Numpy, Pandas, Matplotlib, PyTorch, Scikit-learn, Numba, Git.

Experience

Quantitative Research Intern,

Susquehanna International Group (SIG)

• Learned about machine learning techniques and options theory, and applied them to find signals and develop automated trading strategies.

Visiting Researcher,

Max Planck Institute for Mathematics in the Sciences

 Conducted research on optimization landscapes and graph neural networks and presented results to other researchers.

Graduate Student Researcher, UCLA

- Conducted research on graph neural networks and deep learning theory accepted to major conferences.
- Designed architectures for graph neural networks (GNNs) to prevent bottlenecks, increasing accuracy on graph classification tasks by up to 20% while achieving a 10x speedup over existing state-of-the-art rewiring algorithms. Implemented all methods in PyTorch.
- Served as a reviewer for NeurIPS, ICML, ICLR, TMLR, TPAMI, Discrete Applied Mathematics.

Teaching Assistant, UCLA

 Served as a teaching assistant for several undergraduate math classes, including Machine Learning, Stochastic Processes, Discrete Math, and Calculus.

Undergraduate Researcher, University of Minnesota REU

- Determined and proved necessary algebraic conditions for the Yang-Baxter equation to hold in a more general setting than previously known.
- Found new combinatorial interpretations of the six-vertex and eight-vertex models from statistical mechanics in terms of discrete differential forms and graph coloring.

Undergraduate Researcher, Moravian University REU

 Conducted research on graph theory, number theory, and combinatorics, leading to two publications in Discrete Applied Mathematics.

06/2024 - 08/2024

08/2021 – present | Los Angeles, CA

08/2017 – 05/2021 | University Park, PA

06/2023 - 09/2023

08/2021 - present

06/2020 - 08/2020

08/2021 – present

Publications

Asterisk (*) indicates alphabetical order.

- 1) Bounds for the smallest eigenvalue of the NTK for arbitrary spherical data of arbitrary dimension **Kedar Karhadkar**, Michael Murray, and Guido Montúfar. Preprint: arxiv:2405.14630 🖄 . Accepted to NeurIPS 2024.
- 2) Benign overfitting in leaky ReLU networks with moderate input dimension
- **Kedar Karhadkar**, Erin George, Michael Murray, Guido Montúfar, and Deanna Needell. Preprint: arXiv:2403.06903
- 3) *Mildly Overparameterized ReLU Networks Have a Favorable Loss Landscape* **Kedar Karhadkar**, Michael Murray, Hanna Tseran, and Guido Montúfar. Transactions on Machine Learning Research (2023). Preprint: arXiv:2305.19510 ☑.
- 4) FoSR: First-order spectral rewiring for addressing oversquashing in GNNs
 Kedar Karhadkar, Pradeep Kr. Banerjee, and Guido Montúfar. ICLR 2023. Preprint: arXiv:2210.11790 ☑.
- 5) Oversquashing in GNNs through the lens of information contraction and graph expansion Pradeep Kr. Banerjee, **Kedar Karhadkar**, Yu Guang Wang, Uri Alon, and Guido Montúfar. 58th Annual Allerton Conference on Communication, Control and Computing (2022). Preprint: arXiv:2208.03471 🛛 .
- 6) Sum index and difference index of graphs
 - *Joshua Harrington, Eugene Henninger-Voss, **Kedar Karhadkar**, Emily Robinson, Tony W.H. Wong. Discrete Applied Mathematics (2023). Preprint: arXiv:2008.09265 🛛 .
- 7) Two dependent probabilistic chip-collecting games

*Joshua Harrington, **Kedar Karhadkar**, Madeline Kohutka, Tessa Stevens, and Tony W.H. Wong. Discrete Applied Mathematics (2021).

8) Parity of the partition function p(n, k)

Kedar Karhadkar. International Journal of Number Theory (2019). Preprint: arXiv:1809.07459 🛛 .

9) Lattice models, differential forms, and the Yang-Baxter equation Kedar Karhadkar. Preprint: arXiv:2207.13282 ☑.

Awards

- Putnam Mathematics Competition, Top 500
- Leonhard Euler Memorial Scholarship
 - Awarded by Penn State math department based on academic performance.
- Provost's Award
 - Four-year scholarship awarded by Penn State to incoming freshmen based on academic performance.